Code: CS3T4

II B.Tech - I Semester – Regular/Supplementary Examinations November - 2019

FORMAL LANGUAGES AND AUTOMATA THEORY (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks 11x = 22 M

1.

- a) Define Nondeterministic Finite State Automaton.
- b) Identify the language generated by the regular expression (1+0)*00(0+1)*
- c) Define Ambiguous and Unambiguous grammar.
- d) What is the meaning of the transition $\delta(q_1,0,Z_0)=\{(q_1,0Z_0),(q_2,\epsilon)\}$
- e) Give formal Notation of Turing Machine
- f) Define NP class.
- g) Define Universal Turing Machine.
- h) Construct NFA with ϵ -transitions for the regular expression (1+01)*
- i) Suppose h is the homomorphism from the alphabet $\{0,1,2\}$ to the alphabet $\{a,b\}$ defined by h(0)=a,h(1)=ab,h(2)=ba. What is h(21120)?
- j) Consider the grammar G: S-->aaB, A-->bBb, B-->Aa. Check whether the string *aabbabba* belongs to L(G) or not?
- k) Mention any two operations of DCFL that are not closed.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

2. a) Construct the minimum state Deterministic FiniteAutomaton for the following transition diagram8 M

- b) Construct Mealy machine for ∑={0,1,2}, print the residue modulo 5 of input treated as a ternary number.8 M
- 3. a) Obtain the Minimized DFA equivalent to the regular expression: (00+11)*(01+10)(00+11)* 12 M
 - b) Define Pumping lemma for Regular sets. 4 M
- 4. a) Convert the following CFG into its equivalent Greibach Normal Form S--> $AA \mid 0$, $A-->SS \mid 1$ 8 M
 - b) Eliminate Useless symbols of the following grammar G S-->AB | CA , A-->a , B-->BC | AB , C-->aB | b $$8\,{\rm M}$$

- 5. a) Design a Turing Machine for the language $L=\{ww^R \mid w \in (a+b)^* \text{ and } w^R \text{ is the reverse of } w\}$ 8 M
 - b) Design a PDA to accept the language L= $\{w|w\epsilon(a+b)*$ and $n_a(w)=n_b(w)$. 8 M
- 6. a) Show that the Halting Problem of a Turing machine is Undecidable. 8 M
 - b) Define Post's Correspondence Problem. Obtain the solution for the following Post's correspondence problem A = {ba,abb,bab} B={bab,bb,abb}.8 M